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“Key questions in cancer research involve observing multiscale 
phenomena and collecting multimodal data from diverse sources; 

therefore, single datasets and most existing methods are 
insufficient.” 

Sharpless NE, Kerlavage AR. “The potential of AI in cancer care and research”, 
Biochim Biophys Acta Rev Cancer. 2021
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Data Types in Bioinformatics

• Clinical:
• age, sex, race, histories, pathologies, 

therapeutics

• Omics:
• genomics, transcriptomics, proteomics, 

metabolomics, etc.

• Radiology Images:
• CT, CBCT, MRI, PET

• Pathology Images:
• H&E, Immunohistochemistry (IHC), Multiplex 

immunofluorescence (MxIF)

• Small Molecules:
• Mode of actions, chemical descriptors, etc.

• Free Text:
• Pathology reports, abstracts, etc.

• Other types: 
• Cryo-EM, high content images, etc.
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Examples of Applications of Multimodal Biomedical Data

• Predict cancer prognosis and diagnosis[1]

• Multifaced diseases (cancer, cardiac disease, diabetes, etc.)

• Reduce noise from a single source

• Integrate data at different scales and organism levels

• Generate new mechanistic insights
• Visualize and cluster cancer subtypes [2]

• Understand response to treatments [3]

• Predict Drug Sensitivity
• Enable precision medicine

[1] Cheerla, Anika, and Olivier Gevaert. "Deep learning with multimodal representation for pancancer prognosis prediction." Bioinformatics 35.14 (2019): i446-i454.

[2] Hoadley KA, Yau C, Wolf DM, et al. Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell. 
2014;158(4):929-944.

[3] De Cecco, Loris, et al. "Integrative miRNA-gene expression analysis enables refinement of associated biology and prediction of response to cetuximab in head and 
neck squamous cell cancer." Genes 8.1 (2017): 35.
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Why Multimodal Biomedical Data in Machine Learning?

1. Feature importance in classification: What subset of key modalities and features is 
responsible for the separation of classes? Example: multiple panels in histochemistry

2. Better predictive power: increase classification of regression power using multimodal 
data. Example: Survival analysis from whole slide and gene expression

3. Same as 2 but for unsupervised learning (e.g., clustering). Example: Tumor subtyping
4. Study interaction between different modalities to understand complex biological 

systems from different angles:
• Genotype-phenotype interactions

• Drug response

5. Missing modalities: Perform the task with one modality when other modality is missing
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Challenges of Using Multimodal Data

• Curse of dimensionality: Nfeatures (all modalities) >> Nsamples : 1000s of features in 
100s of samples.

• Heterogeneous data: scale of features, type of features, fusion, etc.

• Missing data: Remove, impute, bias

• Rarity and class imbalance

• Big data salacity: FAIR Data, scalable compute, etc.
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Big Data Scalability

• FAIR Data
• Data annotation

• Data retrieval

• Scalable Compute:
• Personal

• Virtual machines

• Division cluster
• NIH High Performance Compute cluster: Biowulf

• Cloud compute

• Department of Energy Leadership compute
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Challenges: Curse of Dimensionalities

• Every modality is represented by a features vector (e.g, pixels for images) 
• Nfeatures (all modalities) >> Nsamples : 1000s of features versus in 100s of samples.

• Makes machine learning prune to over fitting: good performance on training data, 
worse performance on test data

• Multimodal data makes this problem even harder
• Can be solved using:

• Dimensionality reduction techniques (more later)

• Features selection techniques:
• Filter out features that do not provide much Information Gain (IG) 

• Iteratively train surrogate models with a subset of features

• Use models that implicitly apply feature selection (LASSO regression in linear 
models)
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Challenges: Missing Data

• Remove samples with missing data. Potential for large data loss

• Impute missing data: mean, median, regression from un-missing data, K-nearest neighbor, etc.

• Imputation from existing modalities: e.g., add the text based on images

• For complementary modalities, project the two modalities into a new coordinated space, such that if one 
modality is missing, the other modality can be used in a given for prediction.

• Other methods include maximum likelihood estimators, Gaussian Mixture Models, denoising 
autoencoders for clinical and RNASeq imputation.

• Multiple imputation: Impute using different methods, resulting multiple new imputed samples

• The imputation methods are prune to add bias

DOG

Coordinated feature space
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Challenges: Heterogeneous Data

• Number and types of features in every modality:
• Continuous, discrete, categorical, interval variables

• Different scales, distribution, statistical properties

• Potential preprocessing: 
• Normalize every modality (e.g. zero mean, unit variance)

• Scale the values in every modality by the inverse of the number of features

• Compare every modality independently using Multiple Kernel Methods
• Different data source has different notion of similarities

• Dimensionality reduction for every modality separately (e.g., autoencoder) [1], [2]
[1] Zhang, Tianyu, et al. "Synergistic drug combination prediction by integrating multiomics data in deep learning 
models." Translational Bioinformatics for Therapeutic Development. Humana, New York, NY, 2021. 223-238.

[2] Cheerla, Anika, and Olivier Gevaert. "Deep learning with multimodal representation for pancancer prognosis 
prediction." Bioinformatics 35.14 (2019): i446-i454.
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Challenges: Rarity and Class Imbalance

• Baseline classifier can completely ignore rare class and achieve very high accuracy by 
always predicting abundant class (e.g., over 99% for 10000, 100 imbalance in samples)

• This is a very common problem in biological data: enhancer in genomes, DNA 
methylation status, modification of amino acid residues, etc.

• Potential solutions: 
• Data sampling: before classification, up-sample (e.g., using SMOTE), down-sample, or mix 

of both

• Algorithm modification: apply a higher loss weight to the minority class (e.g., 
SVM_Weight)

• Ensemble learning: Train multiple classifier using the the minority class and a random 
subsample of the majority class, then combine predictions of individual classifiers 
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Challenges: Rarity and Class Imbalance

• Use appropriate metrics to evaluate the algorithm
• For binary class (Majority is negative, Minority is positive):

• Specificity (accuracy of the majority class) = True Negative / Total Negative

• Sensitivity (accuracy of the minority class) = True Positive / Total Positive

• F1 score = (2TP) / (2TP + FP + FN)

• Other metrics: balanced error rates, area under the precision-recall curve, 
etc.

• For multiclass; 
• Micro and Macro F1 scores, balanced error rates, confusion matrix, etc.
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How to Incorporate/Fuse Multi-View Data in the Learning Process?

• Early:
• Concatenate the features as a single vector. 

• Features can be normalized (zero mean, unit variance)

Image adapted from: Nobel W, Support vector machine applications in computational biology, 2004

Features
Train ModelConcatenate

Samples

Samples

Features
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Features Concatenation

• Features come in different forms:
• Continuous, discrete, characters, graphical, etc.

• A conversion would be needed:

• Continuous to discrete (or vice versa)

• Categorical to one hot coding (e.g., for three classes: “100”, “010” ,”001”)

• Features come in different scales:
• Normalize and Standardize

• Concatenation might not be feasible:
• Example (bag of words representing a document + image pixels) The semantics of the 

bag of words will be lost

• Concatenated features can be used in linear classification with regularization to 
select the most important features in achieving a task.
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Trees of Mixed Data Types

• Decision trees can combine continuous and discrete data simultaneously
• There is no need for normalization because values of continuous variable can be 

split into ranges as part of the rules
• Decision trees are prone to noise and overfitting

• Solution can be in and ensemble of multiple trees (e.g., random forests)

• Early and late incorporation of mixed data types can be used to build the trees
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How to Incorporate Multi-view Data in the Learning Process?

• Intermediate:
• First compute on every modality separately, then combine the partial computation as input to 

the prediction model

Image adapted from: Nobel W, Support vector machine applications in computational biology, 2004

Features Training ModelCompute Concatenate
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Feature Extraction to View Specific Components

• Apply a feature extraction/reduction method 
for every modality separately, then 
concatenate these features.

• How to extract features:
• Matrix factorization: e.g., Principal Component 

Analysis, Multi Omics Factor Analysis, etc.

• Non-linear dimensionality reduction methods: 

• t-Distributed Stochastic Neighbor Embedding 
(t-SNE)

• Autoencoders (neural networks)

• New features are numeric, easy to 
concatenate, and have smaller dimensions

• Interactions between features still cannot be 
accounted for.
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How to Incorporate Multi-view Data in the Learning Process?

• Late:
• Learn separate models from every modality, then combine the outputs to make a final 

prediction

Image adapted from: Nobel W, Support vector machine applications in computational 
biology, 2004

Features Ensemble
Prediction

ModelTraining
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Multi-Omic Clustering for 10 Cancer Types

Figure source: Nimrod Rappoport, Ron Shamir, Multi-omic and multi-view clustering algorithms: review 
and cancer benchmark, Nucleic Acids Research, 2018
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Pathomic Fusion: H&E Whole Slide + Genomic Profile

Figure source: Richard J. Chen, Ming Y. Lu, Jingwen Wang, Drew F. K. Williamson, Scott J. Rodig, Neal I. Lindeman, Faisal Mahmood, "Pathomic
Fusion: An Integrated Framework for Fusing Histopathology and Genomic Features for Cancer Diagnosis and Prognosis”, IEEE Transactions on 
Medical Imaging 2021

Kronecker product
instead of 
concatenation
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Pan Cancer Prognosis Prediction using Multimodal Representation 



Frederick National Laboratory for Cancer Research

Drug Response Prediction Using Neural Networks
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Example: Predicting Tumor Cell Line Response to 
Drug Pairs with Deep Learning

Figure source: George Adam et al. Machine learning approaches to drug response 
prediction: challenges and recent progress, NPJ Precis Oncol, 2020

• Most patients with cancer are still 
treated in a one-size-fits-all manner

• A growing number of examples of 
personalizing monotherapy in 
practice

• Monotherapies may not be effective 
due to tumor heterogeneity and 
acquired drug resistance

• A growing body of work predicting 
drug synergy and effective drug 
combinations
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Combo: Combination Drug Response Predictor

• Developed by computer scientists in the Argonne National Laboratory
• Predict tumor cell line growth to drug pairs using deep learning models (artificial 

neural networks)
• The workflow consists of 5 main steps:

• Collect and preprocess dataStep 1

• Design and build the modelStep 2

• Fit the model to the training dataStep 3

• Use the model to make predictionsStep 4

• Evaluate the accuracy of the predictionsStep 5
Fangfang Xia, et al. Predicting tumor cell line response to drug 
pairs with deep learning, BMC Bioinformatics, 2018
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Combo: Data

• Data sources
• Cell line molecular features

• Gene expression 
• Protein abundance 
• microRNA expression 

• Drug descriptors
• Dragon

• Drug pair screen data
• A subset of NCI-ALMANAC
• 54 FDA-approved 

anticancer drugs

Figure source: Fangfang Xia, et al. Predicting tumor cell line 
response to drug pairs with deep learning, BMC Bioinformatics, 2018



Frederick National Laboratory for Cancer Research

Combo: Data and Data Preprocessing

Susan L. Holbeck, et al. The National Cancer Institute ALMANAC, Cancer Res, 2017

NCI-ALMANAC
• Systematically examine the combination efficacy of 104 FDA-approved 

anticancer drugs
• Catalog in vitro screen results of their pairwise combinations against the 

NCI-60 cell lines
• Growth inhibition percentage converted to fraction

• ComboScore: differences in observed versus expected growth fractions
Data preprocessing
• log(x+1) transformation
• Imputation and scaling
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Combo: Design and Implementation

• Neural network Architecture
• Feature encoding models (3 layers)

• 3 molecular feature models
• 1 drug descriptor model

• Growth prediction model (4 layers)

• Implemented with Keras

Figure source: Fangfang Xia, et al. Predicting tumor cell line 
response to drug pairs with deep learning, BMC Bioinformatics, 2018
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Combo: Train, Test, and Performance Evaluation

• Performance of the drug pair 
response model measured with 5-
fold cross validation

• Metrics:
• Mean Squared Error (MSE)
• Mean Absolute Error (MAE)
• Coefficient of determination (R2)

• Models tested on different 
combinations of feature categories to 
assess their relative importance

Table source: Fangfang Xia, et al. Predicting tumor cell line response 
to drug pairs with deep learning, BMC Bioinformatics, 2018
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Combo: Performance Evaluation

Cell line views of drug combination effect

Figure source: Fangfang Xia, et al. Predicting tumor cell line 
response to drug pairs with deep learning, BMC Bioinformatics, 2021

• Leukemia cell lines have 
drug pairs with most 
enhanced activity on 
average
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Combo: Performance Evaluation

Figure source: Fangfang Xia, et al. Predicting tumor cell line 
response to drug pairs with deep learning, BMC Bioinformatics, 2021

Cell line views of growth prediction error

• Growth fraction prediction errors mostly cancel out near 0
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Combo: Performance Evaluation

Figure source: Fangfang Xia, et al. Predicting tumor cell line 
response to drug pairs with deep learning, BMC Bioinformatics, 2021

Cell line views of growth ranking error
• 75% of the cell lines have the predicted top 100 list at least 75% correct
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Combo: Application

• An important use of drug response models 
is in high throughput virtual screening

• A list of top 10 drug pairs across cell lines 
ranked using the ComboScore calculated 
from PREDICTED growth data

• 80% identical, with the predicted version 
missing (epirubicin, dexrazoxane) and 
overpredicting (epirubicin, 
cyclophosphamide)

Drug pairs with top combination scores across cell lines

Table source: Fangfang Xia, et al. Predicting tumor cell line response 
to drug pairs with deep learning, BMC Bioinformatics, 2018
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Summary

• Opportunities in predicting diagnosis, prognosis, clustering, and drug 
response that would take advantage of complementary and redundant data.

• Challenges still exist, and no single method can overcome them.

• Benefit from the integration of the multimodal data to answer key questions in 
biomedical research. 

• A need for standard benchmarks to compare models, and systematic ways to 
collect machine learning ready data.
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