Applications of Deep Learning for High-Throughput Imaging

Gianluca Pegoraro CCR High-Throughput Imaging Facility Jun 15 2021

NIH NATIONAL CANCER INSTITUT

High-Throughput Imaging (HTI)

HiTIF

High-Throughput Acquisition and Analysis

2D images/day = n * m * λ * z * t ≈ *up to* 2*10⁵

Deep Learning for Nucleus Segmentation

- Accurate Detection:
 - 90%-95% accuracy
- Practical:
 - Trainable with ~ 10 FOVs (~500 1,000 objects)
 - Fast inference (~ 1s/FOV)
- Robust and Generic:
 - Different cell types
 - Different magnifications
 - Different confluency

Semi-automated GT Label Generation

Greyscale Images

Preliminary Labels

Ground Truth (GT) Labels

Automated Label Generation Expert-driven Label Editing

G. Zaki, Gudla P., et al., Cytometry A, 2020

Image Augmentation and Bootstrapping

Feature Pyramid Networks (FPN)-Watershed (WS)

Pipeline for Training and Testing DL Models

DL Models Trained on MCF10A Images (1)

DL Models Trained on MCF10A Images (2)

F1 Score to Measure Inference Performance

F1(t) = TP(t)/(TP(t) + (FP(t) + FN(t))/2)

Inference Performance of Baseline DL Models

Transfer Learning Improves MRCNN Performance

Image Augmentation is not Required

Final DL Models (1)

Final DL Models (2)

Final Models Performance

Summary 1)

- Semi-automated computational pipeline for DL models training/testing
- Transfer learning can improve performance by using networks weights obtained from training on everyday objects
- Training vs. out of the box: it depends...
- Other DL applications: classification, denoising, inpainting

Future Areas of Improvement for DL in Bioimaging

Size	Interactive	Accurate	Scalable
Variety	Easy to use	Fast	Cost effective
Quality	Train. Integrated	Generic	Easy to use

CEM500K

Conrad R. and Narayan K., eLife, 2021

Datasets

Imjoy

Ouyang W., Nat. Meth., 2019; Ouyang W., F1000Res, 2021

Annotation

CellPose: 2D Segmentation

Stringer C., Nat. Meth., 2021

Model

Datasets

CellPose Works "Out of the box"

G. Zaki and A. Keikhosravi

CellPose: 3D Segmentation

Stringer C., Nat. Meth., 2021

Model

Better Tools to Serve Models: Deep Cell Kiosk

DeepCell Deployment Kiosk Architecture

Bannon D., Nat. Meth., 2021

Inference

- Rapid improvements in making DL more accessible for biologists, larger curated datasets, better model architectures, higher-throughput at inference
- Biologists should pair up with ML/DL experts

Acknowledgements

HiTIF <u>P. Gudla (f)</u> L. Ozbun K. Lee (f) A. Keikhosravi

FNL

<u>G. Zaki</u> J. Kim Collaborators S. Shachar (f) T. Misteli (CCR) M. Gadkari L. Franco (NIAMS) J. Sung I. Fraser (NIAD)

NIH NATIONAL CANCER INSTITUTE

NIH HPC Team

Contact Information

Laboratory of Receptor Biology and Gene Expression Center for Cancer Research/NCI

Gianluca Pegoraro gianluca.pegoraro@nih.gov

